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PSA Pareto simulated annealing 
PDMOSA Pareto domination based multi-objective simulated anneal-

ing 
WMOSA weight based multi-objective simulated annealing 

Notations 

jx   number of components at subsystem j  

jr    component reliability at subsystem j 

n    number of subsystems in the system 
m    number of resources 
x    ),...,,...,( 11 nn rrxx  

)(xig  total amount of resource i required for x 

SR   system reliability 

SC   total system cost 

0R   a specified minimum SR  

0C   a specified minimum SC  

α    system user’s risk level, 0<α<1 

x,αt   system percentile life, }1:0inf{, αα −≤≥= SRtt x  

SE   generalized MSS availability index 

0E   a specified minimum SE  

1S    the set of optimal solutions of P1 

2S   the set of optimal solutions of P2  

)(zUi  U-function of component i 

ig1   output performance level of component 1, i = 1,…, I 

jg 2   output performance level of component 2, j = 1,…, J 

ip1   }])([Pr{lim 11 it gtg =∞→  

jp2   }])([Pr{lim 22 jt gtg =∞→
 

sω   )(⋅ω of series components 

γωs   sω  for Type-γ  MSS 
τωs   sω  in modeτ  

pω   )(⋅ω of parallel components 

γω p   pω  for Type-γ  MSS 
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τω p   pω  in modeτ  

τG   output performance level of the entire MSS in modeτ  

τW   system demand in modeτ  

),( τττ WGF  function representing the desired relation between MSS 

performance level and demand in modeτ  
)(xDµ  membership function of the fuzzy decision 

)(x
if

µ  membership function of ith fuzzy goal 

ijr    reliability of component j in subsystem i 

ijc   cost of component j in subsystem i 

ijw   weight of component j in subsystem i 

ijτ   pheromone trail intensity of (i, j) 

ijη   problem-specific heuristic of (i, j), )/( ijijijij wcr +=η  

ijP   transition probability of (i, j),  
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T    MSS operation period 
∗W   required MSS performance level 

Pry  probability of failure from related fault between two soft-
ware versions 

Pall  probability of failure from related fault among all software 
versions due to faults in specification 

1.1 Introduction 

Reliability has become an even greater concern in recent years because 
high-tech industrial processes with increasing levels of sophistication 
comprise most engineering systems today. Based on enhancing component 
reliability and providing redundancy while considering the trade-off be-
tween system performance and resources, optimal reliability design that 
aims to determine an optimal system-level configuration has long been an 
important topic in reliability engineering. Since 1960, many publications 
have addressed this problem using different system structures, performance 
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measures, optimization techniques and options for reliability improve-
ment.  

Refs [45], [93] and [123] provide good literature surveys of the early 
work in system reliability optimization. Tillman, et al. [123] were the first 
to classify papers by system structure, problem type, and solution methods. 
Also described and analyzed in [123] are the advantages and shortcomings 
of various optimization techniques. It was during the 1970s that various 
heuristics were developed to solve complex system reliability problems in 
cases where the traditional parametric optimization techniques were insuf-
ficient. In their 2000 report, Kuo and Prasad [45] summarize the develop-
ments in optimization techniques, along with recent optimization methods 
such as meta-heuristics, up until that time. This chapter discusses the con-
tributions made to the literature since the publication of [45]. The majority 
of recent work in this area is devoted to 

• multi-state system optimization; 
• percentile life employed as a system performance measure; 
• multi-objective optimization; 
• active and cold-standby redundancy; 
• fault-tolerance mechanism; 
• optimization techniques, especially ant colony algorithms and hybrid 

optimization methods. 

Based on their system performance, reliability systems can be classified 
as binary-state systems or multi-state systems. A binary-state system and 
its components may exist in only two possible states either working or 
failed. Binary system reliability models have played very important roles 
in practical reliability engineering. To satisfactorily describe the perform-
ance of a complex system, however, we may need more than two levels of 
satisfaction for example, excellent, average, and poor [46]. For this rea-
son, multi-state system reliability models were proposed in the 1970s, al-
though a large portion of the work devoted to MSS optimal design has 
emerged since 1998. The primary task of multi-state system optimization 
is to define the relationship between component states and system states. 

Measures of system performance are basically of four kinds: reliability, 
availability, mean time-to-failure and percentile life. Reliability has been 
widely used and thoroughly studied as the primary performance measure 
for non-maintained systems. For a maintained system, however, availabil-
ity, which describes the percentage of time the system really functions, 
should be considered instead of reliability. Availability is most commonly 
employed as the performance measure for renewable MSS. Meanwhile, 

–

–



 

percentile life is preferred to reliability and mean time-to-failure when the 
system mission time is indeterminate, as in most practical cases.  

Some important design principles for improving system performance are 
summarized in [46]. This chapter primarily reviews articles that address 
either the provision of redundant components in parallel or the combination 
of structural redundancy with the enhancement of component reliability. 
These are called redundancy allocation problems and reliability-redundancy 
allocation problems, respectively. Redundancy allocation problems are well 
documented in [45] and [46], which employ a special case of reliability-
redundancy allocation problems without exploring the alternatives of com-
ponent combined improvement. Recently, much of the effort in optimal 
reliability design has been placed on general reliability-redundancy alloca-
tion problems, rather than redundancy allocation problems.  

In practice, two redundancy schemes are available: active and cold-
standby. Cold-standby redundancy provides higher reliability, but it is hard 
to implement because of the difficulty of failure detection. Reliability de-
sign problems have generally been formulated considering active redun-
dancy; however, an actual optimal design may include active redundancy 
or cold-standby redundancy or both. 

However, any effort for improvement usually requires resources. Quite 
often it is hard for a single objective to adequately describe a real problem 
for which an optimal design is required. For this reason, multi-objective 
system design problem always deserves a lot of attention. 

Optimal reliability design problems are known to be NP-hard [8]. Find-
ing efficient optimization algorithms is always a hot spot in this field. 
Classification of the literature by reliability optimization techniques is 
summarized in Table 1. Meta-heuristic methods, especially GAs, have 
been widely and successfully applied in optimal system design because of 
their robustness and efficiency, even though they are time consuming, es-
pecially for large problems. To improve computation efficiency, hybrid 
optimization algorithms have been increasingly used to achieve an effec-
tive combination of GAs with heuristic algorithms, simulation annealing 
methods, neural network techniques and other local search methods.  

This chapter describes the state-of-art of optimal reliability design. Em-
phasizing the foci mentioned above, we classify the existing literature 
based on problem formulations and optimization techniques. The remain-
der of the chapter is organized as follows: Section 2 includes four main 
problem formulations in optimal reliability allocation; Section 3 describes 
advances related to those four types of optimization problems; Section 4 sum-
marizes developments in optimization techniques; and Section 5 provides 
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conclusions and a discussion of future challenges related to reliability 
optimization problems. 

Table 1. Reference classification by reliability optimization methods 

Meta-heuristic Algorithm 
ACO [82], [92], [95], [116] 

GA 
[1], [7], [11], [14], [28], [35], [52], [53], [54], [56], [57], [58], [59], 
[60], [62], [63], [64], [65], [67], [68], [72], [73], [74], [78], [79], 
[84], [91], [128] 

HGA [33], [34], [48], [49], [50], [114], [115], [121], [122], [132], [133] 
TS [41] 
SA [1], [118], [124], [131] 
IA [9] 
GDA [107] 
CEA [109] 

Exact Method 

[20], [27], [30], [83], [102], [103], [119], [120] 

Max-Min Approach 

[51], [104] 

Heuristc Method 

[105], [129] 

Dynamic Programming 

[97], [127] 

1.2 Problem Formulations 

Among the diversified problems in optimal reliability design, the follow-
ing four basic formulations are widely covered.  

Problem 1 (P1): 
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Problem 1 formulates the traditional reliability- redundancy allocation 
problem with either reliability or cost as the objective function. Its solution 
includes two parts: the component choices and their corresponding optimal 
redundancy levels.  

Problem 2 (P2): 

X
x

x
x

x

∈

=≤ mibtg

t

ii ,...,1for ,);(
s.t.
max

,

,

α

α

 

 

Problem 2 uses percentile life as the system performance measure in-
stead of reliability. Percentile life is preferred especially when the system 
mission time is indeterminate. However, it is hard to find a closed analyti-
cal form of percentile life in decision variables.  

Problem 3 (P3): 
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Problem 3 represents MSS optimization problems. Here, E is used as a 
measure of the entire system availability to satisfy the custom demand rep-
resented by a cumulative demand curve with a known T and W*.  

Problem 4 (P4): 

Recent Advances in Optimal Reliability Allocation      7 



 

            Xx
,,1 for        ,)x(

s.t.

)]x(,),x(),x([max 21

∈
=≤

=

mibg

fffz

ii

S

K

K

 

 

For multi-objective optimization, as formulated by Problem 4, a Pareto 
optimal set, which includes all of the best possible trade-offs between 
given objectives, rather than a single optimal solution, is usually identi-
fied,. 

In all of the above formulations, the resource constraints may be linear 
or nonlinear or both.  

The literature, classified by problem formulations, is summarized in 
Table 2.  

Table 2.  Reference classification by problem formulation 

P1 
[1], [2], [3], [9], [12], [13], [15], [20], [27], [30], [35], [36], [41], [48], 
[49], [50], [79], [81], [83], [95], [97], [100], [101], [102], [109], [119], 
[120], [121], [122], [124], [127], [129], [132], [133] 

P2 [11], [14], [39], [103], [132], [133] 

P3 
[52], [53], [54], [56], [57], [58], [59], [60], [62], [63], [64], [65], [67], 
[68], [72], [73], [74], [78], [79], [84], [92], [99], [105] 

P4 [7], [16], [28], [91], [106], [114], [115], [116], [118], [131], [132] 

1.3 Brief Reviews of Advances in P1-P4 

1.3.1 Traditional Reliability-Redundancy Allocation Problem (P1) 

System reliability can be improved either by incremental improvements in 
component reliability or by provision of redundancy components in parallel; 
both methods result in an increase in system cost. It may be advantageous 
to increase the component reliability to some level and provide redundancy 
at that level [46], i.e. the tradeoff between these two options must be 
considered. According to the requirements of the designers, traditional 
reliability-redundancy allocation problems can be formulated either to 
maximize system reliability under resource constraints or to minimize the 
total cost that satisfies the demand on system reliability. These kinds of 
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problems have been well-developed for many different system structures, 
objective functions, redundancy strategies and time-to-failure distributions. 
Two important recent developments related to this problem are addressed 
below. 

1.3.1.1 Active and Cold-Standby Redundancy 

P1 is generally limited to active redundancy. A new optimal system con-
figuration is obtained when active and cold-standby redundancies are both 
involved in the design. A cold-standby redundant component does not fail 
before it is put into operation by the action of switching, whereas the fail-
ure pattern of an active redundant component does not depend on whether 
the component is idle or in operation. Cold-standby redundancy can pro-
vide higher reliability, but it is hard to implement due to the difficulties in-
volved in failure detection and switching. 

In Ref [12], optimal solutions to reliability-redundancy allocation prob-
lems are determined for non-repairable systems designed with multiple 
k-out-of-n subsystems in series. The individual subsystems may use either 
active or cold-standby redundancy, or they may require no redundancy. As-
suming an exponentially distributed component time-to-failure with rate ijλ , 
the failure process of subsystem i with cold-standby redundancy can be des-
cribed by a Poisson process with rate iijkλ , while the subsystem reliability 
with active redundancy is computed by standard binominal techniques. 

For series-parallel systems with only cold-standby redundancy, Ref [13] 
employs the more flexible and realistic Erlang distributed component time-
to-failure. Subsystem reliability can still be evaluated through a Poisson 
process, though )(tiρ  must be introduced to describe the reliability of the 
imperfect detection/switching mechanism for each subsystem.  

Ref [15] directly extends this earlier work by introducing the choice of 
redundancy strategies as an additional decision variable. With imperfect 
switching, it illustrates that there is a maximum redundancy level where 
cold-standby reliability is greater than, or equal to, active reliability, i.e. cold-
standby redundancy is preferable before this maximum level while active 
redundancy is preferable after that.  

All three problems formulated above can be transformed by logarithm 
transformation and by defining new 0-1 decision variables. This transforma-
tion linearizes the problems and allows for the use of integer programming 
algorithms. For each of these methods, however, no mixture of component 
types or redundancy strategies is allowed within any of the subsystems. 
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In addition, Ref [6] investigates the problem of where to allocate a spare 
in a k-out-of-n: F system of dependent components through minimal 
standby redundancy; and Ref [110] studies the allocation of one active re-
dundancy when it differs based on the component with which it is to be 
allocated. Ref [101] considers the problem of optimally allocating a fixed 
number of s-identical multi-functional spares for a deterministic or stochas-
tic mission time. In spite of some sufficiency conditions for optimality, the 
proposed algorithm can be easily implemented even for large systems. 

1.3.1.2 Fault-Tolerance Mechanism 

Fault tolerance is the ability of a system to continue performing its in-
tended function in spite of faults. System designs with fault-tolerance 
mechanisms are particularly important for some computer-based systems 
with life-critical applications, since they must behave like a non-repairable 
system within each mission, and maintenance activities are performed only 
when the system is idle [3].  

Ref [2] maximizes the reliability of systems subjected to imperfect fault-
coverage. It generalizes that the reliability of such a system decreases with 
an increase in redundancy after a particular limit. The results include the 
effect of common-cause failures and the maximum allowable spare limit. 
The models considered include parallel, parallel-series, series-parallel, 
k-out-of-n and k-out-of-(2k-1) systems. 

Similarly to imperfect fault-coverage, Ref [3] later assumes the redun-
dancy configurations of all subsystems in a non-series-parallel system are 
fixed except the k-out-of-n: G subsystem being analyzed. The analysis 
leads to n*, the optimal number of components maximizing the reliability 
of this subsystem, which is shown to be necessarily greater than, or equal 
to, the optimal number required to maximize the reliability of the entire 
system. It also proves that n* offers exactly the maximal system reliability 
if the subsystem being analyzed is in series with the rest of the system. 
These results can even be extended to cost minimization problems. 

Ref [87] considers software component testing resource allocation for a 
system with single or multiple applications, each with a pre-specified reli-
ability requirement. Given the coverage factors, it can also include fault-
tolerance mechanisms in the problem formulation. The relationship between 
the component failure rates of and the cost of decreasing this rate is mod-
eled by various types of reliability-growth curves. 

For software systems, Ref [79] presents a UGF & GA based algorithm 
that selects the set of versions and determines the sequence of their execu-
tion, such that the system reliability (defined as the probability of obtaining 



 

the correct output within a specified time) is maximized subject to cost 
constraints. The software system is built from fault-tolerant NVP and RB 
components. 

All of these optimization models mentioned above have been developed 
for hardware-only or software-only systems. Ref [124] first considers sev-
eral simple configurations of fault-tolerant embedded systems (hardware 
and software) including NVP/0/1, NVP/1/1, and RB/1/1, where failures of 
software units are not necessarily statistically independent. A real-time 
embedded system is used to demonstrate and validate the models solved by 
a simulated annealing optimization algorithm. Moreover, Ref [80] gener-
ally takes into account fault-tolerant systems with series architecture and 
arbitrary number of hardware and software versions without common 
cause failures. An important advantage of the presented algorithm lies in 
its ability to evaluate both system reliability and performance indices. 

1.3.2 Percentile Life Optimization Problem (P2)  

Many diversified models and solution methods, where reliability is used as 
the system performance measure, have been proposed and developed since 
the 1960s. However, this is not an appropriate choice when mission time 
cannot be clearly specified or a system is intended for use as long as it func-
tions. Average life is also not reliable, especially when the implications of 
failure are critical or the variance in the system life is high. Percentile life is 
considered to be a more appropriate measure, since it incorporates system 
designer and user risk. When using percentile life as the objective function, 
the main difficulty is its mathematical inconvenience, because it is hard to 
find a closed analytical form of percentile life in the decision variables.  

Ref [11] solves redundancy allocation problems for series-parallel sys-
tems where the objective is to maximize a lower percentile of the system 
time-to-failure (TTF) distribution. Component TTF has a Weibull distribu-
tion with known deterministic parameters. The proposed algorithm uses a 
genetic algorithm to search the prospective solution-space and a bisection 
search to evaluate 't in α−=1):,'( kxtR . It is demonstrated that the solution 
that maximizes the reliability is not particularly effective at maximizing 
system percentile life at any  level, and the recommended design configu-
rations are very different depending on the  level. Later in the literature, 
Ref [14] addresses similar problems where Weibull shape parameters are 
accurately estimated but scale parameters are random variables following a 
uniform distribution. 
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Ref [103] develops a lexicographic search methodology that is the first 
to provide exact optimal redundancy allocations for percentile life optimi-
zation problems. The continuous relaxed problem, solved by Kuhn-Tucker 
conditions and a two-stage hierarchical search, is considered for obtaining 
an upper bound, which is used iteratively to effectively reduce search 
space. This algorithm is general for any continuous increasing lifetime dis-
tribution.  

Three important results are presented in [39] which describe the general 
relationships between reliability and percentile life maximizing problems. 

• S2 equals S1 given ),(1 ∗−= tst tR xα , where 1St ∈
∗x ; 

• S1 equals S2 given
*, αα xt , where 2

* S∈αX ; 

• Let )(tψ 1 α
}1)(:0inf{ αΨα −≤≥= ttt  is the optimal objective value of P2. 

Based on these results, a methodology for P2 is proposed to repeat solv-
ing P1 under different mission times satisfying )(1)( 20 tt ψαψ ≥−≥  until 

**
20

xx tttt == =  and 20 tt −  is within a specified tolerance. It is reported to be 
capable of settling many unsolved P2s using existing reliability-optimization 
algorithms. Without the necessity of an initial guess, this method is much 
better than [103] at reaching the exact optimal solution in terms of execu-
tion time. 

1.3.3 MSS Optimization (P3) 

MSS is defined as a system that can unambiguously perform its task at dif-
ferent performance levels, depending on the state of its components which 
can be characterized by nominal performance rate, availability and cost. 
Based on their physical nature, multi-state systems can be classified into 
two important types: Type I MSS (e.g. power systems) and Type II MSS 
(e.g. computer systems), which use capacity and operation time as their 
performance measures, respectively.  

In the literature, an important optimization strategy, combining UGF and 
GA, has been well developed and widely applied to reliability optimiza-
tion problems of renewable MSS. In this strategy, there are two main tasks:  

According to the system structure and the system physical nature, obtain 
the system UGF from the component UGFs; 

Find an effective decoding and encoding technique to improve the effi-
ciency of the GA. 

be the optimal objective value of P . For a fixed   , 
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Ref [52] first uses an UGF approach to evaluate the availability of a 
series-parallel multi-state system with relatively small computational 
resources. The essential property of the U-transform enables the total 
U-function for a MSS with components connected in parallel, or in series, 
to be obtained by simple algebraic operations involving individual compo-
nent U-functions. The operator ωΩ is defined by (1) - (3). 
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The function )(⋅ω takes the form from (4) - (7). 
For Type I MSS, 

),min(),( 21211 ggggs =ω  (4) 

21211 ),( ggggp +=ω        (5) 

For Type II MSS, 

21

21
212 ),(

gg
gg

ggs +
=ω  (6) 

21212 ),( ggggp +=ω  (7) 

Later, Ref [55] combines importance and sensitivity analysis and Ref 
[75] extends this UGF approach to MSS with dependent elements. Table 3 
summarizes the application of UGF to some typical MSS structures in op-
timal reliability design.  

With this UGF & GA strategy, Ref [84] solves the structure optimiza-
tion of a multi-state system with time redundancy. TRS can be treated as 

ured by the processing speed. Two kinds of systems are considered: systems
a Type II MSS, where the system and its component performance are meas-
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Table 3. Application of UGF approach 

Series-Parallel System [52], [54], [55], [59], [62], [65], [72], [73], [74], [92] 
Bridge System [53], [56], [71], [84] 
LMSSWS [64], [70], [78] 
WVS 58], [66] 
ATN [63], [69] 
LMCCS [67], [68] 
ACCN [61] 

 
Ref [57] applies the UGF & GA strategy to a multi-state system consist-

ing of two parts: 

• RGS including a number of resource generating subsystems; 
• MPS including elements that consume a fixed amount of resources to 

perform their tasks. 

Total system performance depends on the state of each subsystem in the 
RGS and the maximum possible productivity of the MPS. The maximum 
possible productivity of the MPS is determined by an integer linear pro-
gramming problem related to the states of the RGS.     

Ref [59] develops an UGF & GA strategy for multi-state series-parallel 
systems with two failure modes: open mode and closed mode. Two opti-
mal designs are found to maximize either the system availability or the 
proximity of expected system performance to the desired levels for both 
modes. The function )(⋅ω and the conditions of system success for both two 
modes are shown as follows. 

For Type I MSS, 

),min(),(),( 212121 gggggg C
s

O
s ==ωω  (8) 

212121 ),(),( gggggg C
p

O
p +== ωω  (9) 

0),( ≥−= CCCCC WGWGF  (10) 

0),( ≥−= OOOOO GWWGF  (11) 

For Type II MSS, 

),min(),( 2121 ggggO
s =ω  (12) 

with hot reserves and systems with work sharing between components
connected in parallel. 



 

),max(),( 2121 ggggO
p =ω  (13) 

),max(),( 2121 ggggC
s =ω  (14) 

),min(),( 2121 ggggC
p =ω  (15) 

0),( ≥−= CCCCC GWWGF  (16) 

0),( ≥−= OOOOO GWWGF  (17) 

Thus, the system availability can be denoted by 

}0)),((Pr{}0)),((Pr{1)( <−<−= OOOCCCs WtGFWtGFtA  (18) 

Later [65, 71] introduces a probability parameter of 0.5 for both modes 
and [71] even extends this technique to evaluate the availability of systems 
with bridge structures.   

To describe the ability of a multi-state system to tolerate both internal 
failures and external attacks, survivability, instead of reliability, is pro-
posed in Refs [56, 60, 67, 72-74]. Ref [56] considers the problem of how 
to separate the elements of the same functionality between two parallel 
bridge components in order to achieve the maximal level of system surviv-
ability, while an UGF &GA strategy in [60] is used to solve the more gen-
eral survivability optimization problem of how to separate the elements of 
a series-parallel system under the constraint of a separation cost. Ref [72] 
considers the problem of finding structure of series-parallel multi-state sys-
tem (including choice of system elements, their separation and protection) 
in order to achieve a desired level of system survivability by minimal cost. 
To improve system’s survivability, Ref [73, 74] further applies a multi-
level protection to its subsystems and the choice of structure of multi-level 
protection and choice of protection methods are also included. Other than 
series-parallel system, Ref [67] provides the optimal allocation of multi-
state LCCS with vulnerable nodes. It should be noted that the solution that 
provides the maximal system survivability for a given demand does not 
necessarily provide the greatest system expected performance rate and that 
the optimal solutions may be different when the system operates under dif-
ferent vulnerabilities.  

In addition to a GA, Ref [92] presents an ant colony method that com-
bines with a UGF technique to find an optimal series-parallel power struc-
ture configuration.  
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Besides this primary UGF approach, a few other methods have been 
proposed for MSS reliability optimization problems. Ref [105] develops a 
heuristic algorithm RAMC for a Type I multi-state series-parallel system. 
The availability of each subsystem is determined by a binomial technique, 
and, thus, the system availability can be obtained in a straightforward 
manner from the product of all subsystem availabilities without using 
UGF. Nevertheless, this algorithm can only adapt to relatively simple for-
mulations, including those with only two-state component behavior and no 
mixing of functionally equivalent components within a particular subsys-
tem. 

A novel continuous-state system model, which may represent reality 
more accurately than a discrete-state system model, is presented in Ref 
[86]. Given the system utility function and the component state probability 
density functions, a neural network approach is developed to approximate 
the objective reliability function of this continuous MSS optimal design 
problem.  

1.3.4 Multi-Objective Optimization (P4) 

In the previous discussion, all problems were single-objective. Rarely 
does a single objective with several hard constraints adequately represent 
a real problem for which an optimal design is required. When designing a 
reliable system, as formulated by P4, it is always desirable to simultane-
ously optimize several opposing design objectives such as reliability, 
cost, even volume and weight. For this reason, a recently proposed multi-
objective system design problem deserves a lot of attention. The objec-
tives of this problem are to maximize the system reliability estimates and 
minimize their associated variance while considering the uncertainty of 
the component reliability estimations. A Pareto optimal set, which includes 
all of the best possible trade-offs between the given objectives, rather 
than a single optimal solution, is usually identified for multi-objective opti-
mization problems. 

When considering complex systems, the reliability optimization prob-
lem has been modeled as a fuzzy multi-objective optimization problem in 
Ref [106], where linear membership functions are used for all of the fuzzy 
goals. With the Bellman & Zadeh model, the decision is defined as the in-
tersection of all of the fuzzy sets represented by the objectives. 
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The influence of various kinds of aggregators, such as the product operator, 
min operator, arithmetic mean operator, fuzzy, and a convex combination 



 

of the min and the max operator and -operator on the solution is also studied 
primarily to learn each advantage over the non-compensatory min opera-
tor. It was found that in some problems illustrated in this paper, the fuzzy 
and the convex combination of the min and the max operator yield efficient 
solutions. 

Refs [114, 115] solve multi-objective reliability- redundancy allocation 
problems using similar linear membership functions for both objectives 
and constraints. By introducing 0-1 variables and by using an add operator 
to obtain the weighted sum of all the membership functions, the problem is 
transformed into a bi-criteria single-objective linear programming problem 
with Generalized Upper Bounding (GUB) constraints. The proposed hy-
brid GA makes use of the GUB structure and combines it with a heuristic 
approach to improve the quality of the solutions at each generation.  

With a weighting technique, Ref [28] also transfers P4 into a single-
objective optimization problem and proposes a GA-based approach whose 
parameters can be adjusted with the experimental plan technique. Ref [7] 
develops a multi-objective GA to obtain an optimal system configuration 
and inspection policy by considering every target as a separate objective. 
Both problems have two objectives: maximization of the system reliability 
and minimization of the total cost, subject to resource constraints. 

P4 is considered for series-parallel systems, RB/1/1, and bridge systems 
in [16] with multiple objectives to maximize the system reliability while 
minimizing its associated variance when the component reliability esti-
mates are treated as random variables. For series-parallel systems, compo-
nent reliabilities of the same type are considered to be dependent since 
they usually share the same reliability estimate from a pooled data set. The 
system variance is straightforwardly expressed as a function in the higher 
moments of the component unreliability estimates [38]. For RB/1/1, the 
hardware components are considered identical and statistically independ-
ent, while even independently developed software versions are found to 
have related faults as presented by the parameters Prv and Pall. Pareto 
optimal solutions are found by solving a series of weighted objective prob-
lems with incrementally varied weights. It is worth noting that signifi-
cantly different designs are obtained when the formulation incorporates 
estimation uncertainty or when the component reliability estimates are 
treated as statistically dependent. Similarly, [91] utilizes a multi-objective 
GA to select an optimal network design that balances the dual objectives 
of high reliability and low uncertainty in its estimation. But the latter 
exploits Monte Carlo simulation as the objective function evaluation engine.  

Ref [131] presents an efficient computational methodology to obtain the 
optimal system structure of a static transfer switch, a typical power elec-
tronic device. This device can be decomposed into several components and 

γ
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its equivalent reliability block diagram is obtained by the minimal cut set 
method. Because of the existence of unit-to-unit variability, each compo-
nent chosen from several off-the-shelf types is considered with failure rate 
uncertainty, which is modeled by a normal, or triangular, distribution. The 
simulation of the component failure rate distributions is performed using 
the Latin Hypercube Sampling method, and a simulated annealing algo-
rithm is finally applied to generate the Pareto optimal solutions.  

Ref [116] illustrates the application of the ant colony optimization algo-
rithm to solve both continuous function and combinatorial optimization 
problems in reliability engineering. The single or multi-objective reliability 
optimization problem is analogized to Dorigo’s TSP problem, and a com-
binatorial algorithm, which includes a global search inspired by a GA cou-
pled with a pheromone-mediated local search, is proposed. After the global 
search, the pheromone values for the newly created solution are calculated 
by a weighted average of the pheromone values of the corresponding par-
ent solutions. A trial solution for conducting the local search is selected 
with a probability proportional to its current pheromone trial value. A two-
step strength Pareto fitness assignment procedure is combined to handle 
multi-objective problems. The advantage of employing the ant colony heu-
ristic for multi-objective problems is that it can produce the entire set of 
optimal solutions in a single run. 

Ref [118] tests five simulated annealing-based multi-objective algo-
rithms  SMOSA, UMOSA, PSA, PDMOSA and WMOSA. Evaluated by 
10 comparisons, Measure C is introduced to gauge the coverage of two ap-
proximations for the real non-dominated set. From the analysis, the com-
putational cost of the WMOSA is the lowest, and it works well even when 
a large number of constraints are involved, while the PDMOSA consumes 
more computational time and may not perform very well for problems with 
too many variables.  

1.4 Developments in Optimization Techniques 

This section reviews recent developments of heuristic algorithms, meta-
heuristic algorithms, exact methods and other optimization techniques in 
optimal reliability design. Due to their robustness and feasibility, meta-
heuristic algorithms, especially GAs, have been widely and successfully 
applied. To improve computation efficiency or to avoid premature conver-
gence, an important part of this work has been devoted in recent years to 

–

developing hybrid genetic algorithms, which usually combine a GA with heu-
ristic algorithms, simulation annealing methods, neural network techniques 
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or other local search methods. Though more computation effort is in-
volved, exact methods are particularly advantageous for small problems, 
and their solutions can be used to measure the performance of the heuristic 
or meta-heuristic methods [45]. No obviously superior heuristic method 
has been proposed, but several of them have been well combined with ex-
act or meta-heuristic methods to improve their computation efficiency.  

1.4.1 Meta-Heuristic Methods 

Meta-heuristic methods inspired by natural phenomena usually include the 
genetic algorithm, tabu search, simulated annealing algorithm and ant col-
ony optimization method. ACO has been recently introduced into optimal 
reliability design, and it is proving to be a very promising general method 
in this field. Ref [1] provides a comparison of meta-heuristics for the opti-
mal design of computer networks.  

1.4.1.1 Ant Colony Optimization Method  

ACO is one of the adaptive meta-heuristic optimization methods devel-
oped by M. Dorigo for traveling salesman problems in [21] and further 
improved by him in [22-26]. It is inspired by the behavior of real life ants 
that consistently establish the shortest path from their nest to food. The es-
sential trait of the ACO algorithm is the combination of a priori informa-
tion about the structure of a promising solution with posteriori information 
about the structure of previously obtained good solutions [88]. 

Ref [81] first develops an ant colony meta-heuristic optimization 
method to solve the reliability-redundancy allocation problem for a k-out-
of-n: G series system. The proposed ACO approach includes four stages: 

1. Construction stage: construct an initial solution by selecting component 
j for subsystem i according to its specific heuristic ijη  and pheromone 
trail intensity ijτ , which also sets up the transition probability mass func-
tion ijP . 

2. Evaluation stage: evaluate the corresponding system reliability and pe-
nalized system reliability providing the specified penalized parameter. 

3. Improvement stage: improve the constructed solutions through local 
search 

4. Updating stage: update the pheromone value online and offline given 
the corresponding penalized system reliability and the controlling pa-
rameter for pheromone persistence. 
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Ref [95] presents an application of the ant system in a reliability optimi-
zation problem for a series system, with multi-choice constraints incorpo-
rated at each subsystem, to maximize the system reliability subject to the 
system budget. It also combines a local search algorithm and a specific 
improvement algorithm that uses the remaining budget to improve the 
quality of a solution.  

The ACO algorithm has also been applied to a multi-objective reliability 
optimization problem [116] and to the optimal design of multi-state series-
parallel power systems [92]. 

1.4.1.2 Hybrid Genetic Algorithm 

GA is a population-based directed random search technique inspired by the 
principles of evolution. Though it provides only heuristic solutions, it can 
be effectively applied to almost all complex combinatorial problems, and, 
thus, it has been employed in a large number of references as shown in 
Table 1. Ref [29] provides a state-of-the-art survey of GA-based reliability 
design.  

To improve computational efficiency, or to avoid premature convergence, 
numerous researchers have been inspired to seek effective combinations of 
GAs with heuristic algorithms, simulation annealing methods, neural net-
work techniques, steepest decent methods or other local search methods. 
The combinations are generally called hybrid genetic algorithms, and they 
represent one of the most promising developmental directions in optimiza-
tion techniques.  

Considering a complex system with a known system structure function, 
Ref [132] provides a unified modeling idea for both active and cold-
standby redundancy optimization problems. The model prohibits any mix-
ture of component types within subsystems. Both the lifetime and the cost 
of redundancy components are considered as random variables, so stochas-
tic simulation is used to estimate the system performance, including the 
mean lifetime, percentile lifetime and reliability. To speed up the solution 
process, these simulation results become the training data for training a 
neural network to approximate the system performance. The trained neural 
network is finally embedded into a genetic algorithm to form a hybrid in-
telligent algorithm for solving the proposed model. Later [133] uses ran-
dom fuzzy lifetimes as the basic parameters and employs a random fuzzy 
simulation to generate the training data.  

Ref [48] develops a two-phase NN-hGA in which NN is used as a rough 
search technique to devise the initial solutions for a GA. By bounding the 
broad continuous search space with the NN technique, the NN-hGA derives 
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the optimum robustly. However, in some cases, this algorithm may require 
too much computational time to be practical.  

To improve the computation efficiency, Ref [49] presents a NN-flcGA 
to effectively control the balance between exploitation and exploration 
which characterizes the behavior of GAs. The essential features of the NN-
flcGA include: 

• combination with a NN technique to devise initial values for the GA 
• application of a fuzzy logic controller when tuning strategy GA parame-

ters dynamically 
• incorporation of the revised simplex search method 

Later, [50] proposes a similar hybrid GA called f-hGA for the redun-
dancy allocation problem of a series-parallel system. It is based on 

• application of a fuzzy logic controller to automatically regulate the GA 
parameters; 

• incorporation of the iterative hill climbing method to perform local ex-
ploitation around the near optimum solution. 

Ref [33] considers the optimal task allocation strategy and hardware re-
dundancy level for a cycle-free distributed computing system so that the 
system cost during the period of task execution is minimized. The pro-
posed hybrid heuristic combines the GA and the steepest decent method. 
Later [34] seeks similar optimal solutions to minimize system cost under 
constraints on the hardware redundancy levels. Based on the GA and a lo-
cal search procedure, a hybrid GA is developed and compared with the 
simple GA. The simulation results show that the hybrid GA provides 
higher solution quality with less computational time. 

1.4.1.3 Tabu Search 

Though [45] describes the promise of tabu search, Ref [41] first develops a 
TS approach with the application of NFT [10] for reliability optimization 
problems. This method uses a subsystem-based tabu entry and dynamic 
length tabu list to reduce the sensitivity of the algorithm to selection of the 
tabu list length. The definition of the moves in this approach offers an 
advantage in efficiency, since it does not require recalculating the entire 
system reliability, but only the reliability of the changed subsystem. The 
results of several examples demonstrate the superior performance of this 
TS approach in terms of efficiency and solution superiority when com-
pared to that of a GA. 
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1.4.1.4 Other Meta-Heuristic Methods 

Some other adaptive meta-heuristic optimization methods inspired by ac-
tivities in nature have also been proposed and applied in optimal reliabil-
ity design. Ref [9] develops an immune algorithms-based approach inspired 
by the natural immune system of all animals. It analogizes antibodies and 
antigens as the solutions and objection functions, respectively. Ref [109] 
proposes a cellular evolutionary approach combining the multimember 
evolution strategy with concepts from Cellular Automata [125] for the 
selection step. In this approach, the parents’ selection is performed only 
in the neighborhood in contrast to the general evolutionary strategy that 
searches for parents in the whole population. And a great deluge algorithm 
is extended and applied to optimize the reliability of complex systems in 
[107]. When both accuracy and speed are considered simultaneously, it is 
proven to be an efficient alternative to ACO and other existing optimiza-
tion techniques. 

1.4.2 Exact Methods 

Unlike meta-heuristic algorithms, exact methods provide exact optimal so-
lutions though much more computation complexity is involved. The de-
velopment of exact methods, such as the branch-and-bound approach and 
lexicographic search, has recently been concentrated on techniques to re-
duce the search space of discrete optimization methods. 

Ref [119] considers a reliability-redundancy allocation problem in 
which multiple-choice and resource constraints are incorporated. The prob-
lem is first transformed into a bi-criteria nonlinear integer programming 
problem by introducing 0-1 variables. Given a good feasible solution, the 
lower reliability bound of a subsystem is determined by the product of the 
maximal component reliabilities of all the other subsystems in the solution, 
while the upper bound is determined by the maximal amount of available 
sources of this subsystem. A branch-and-bound procedure, based on this 
reduced solution space, is then derived to search for the global optimal so-
lution. Later, Ref [120] even combines the lower and upper bounds of the 
system reliability, which are obtained by variable relaxation and Lagrangean 
relaxation techniques, to further reduce the search space.  

Also with a branch-and-bound algorithm, Ref [20] obtains the upper 
bound of series-parallel system reliability from its continuous relaxation 
problem. The relaxed problem is efficiently solved by the greedy proce-
dure described in [19], combining heuristic methods to make use of some 
slack in the constraints obtained from rounding down. This technique as-
sumes the objective and constraint functions are monotonically increasing. 



 

Ref [30] presents an efficient branch-and-bound approach for coherent sys-
tems based on a 1-neighborhood local maximum obtained from the steep-
est ascent heuristic method. Numerical examples of a bridge system and a 
hierarchical series-parallel system demonstrate the advantages of this pro-
posed algorithm in flexibility and efficiency.  

Apart from the branch-and-bound approach, Ref [102] presents a partial 
enumeration method for a wide range of complex optimization problems 
based on a lexicographic search. The proposed upper bound of system reli-
ability is very useful in eliminating several inferior feasible or infeasible 
solutions as shown in either big or small numerical examples. It also shows 
that the search process described in [95] does not necessarily give an exact 
optimal solution due to its logical flows.  

Ref [83] develops a strong Lin & Kuo heuristic to search for an ideal allo-
cation through the application of the reliability importance. It concludes that, 

Assuming the existence of a convex and differential reliability cost 
function )( iji yC , )1log( ijij ry −=  for all component j in any subsystem i, 
Ref [27] proves that the components in each subsystem of a series-parallel 
system must have identical reliability for the purpose of cost minimization. 
The solution of the corresponding unconstrained problem provides the up-
per bound of the cost, while a doubly minimization problem gives its lower 
bound. With these results, the algorithm ECAY, which can provide either 
exact or approximate solutions depending on different stop criteria, is pro-
posed for series-parallel systems. 

1.4.3 Other Optimization Techniques 

For series-parallel systems, Ref [104] formulates the reliability-
redundancy optimization problem with the objective of maximizing the 
minimal subsystem reliability. 

Problem 5 (P5): 
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allocation is to assign component reliabilities according to B-importance 
ordering. This Lin & Kuo heuristic can provide an exact optimal allocation. 

if there exists an invariant optimal allocation for a system, the optimal 
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Assuming linear constraints, an equivalent linear formulation of P5 [36] 
can be obtained through an easy logarithm transformation, and, thus, the 
problem can be solved by readily available commercial software. It can 
also serve as a surrogate for traditional reliability optimization problems 
accomplished by sequentially solving a series of max-min subproblems.  

Ref [51] presents a comparison between the Nakagawa and Nakashima 
method [43] and the max-min approach used by Ramirez-Marquez from 
the standpoint of solution quality and computational complexity. The 
experimental results show that the max-min approach is superior to the 
Nakagawa and Nakashima method in terms of solution quality in small-
scale problems, but the analysis of its computational complexity demon-
strates that the max-min approach is inferior to other greedy heuristics. 

Ref [129] develops a heuristic approach inspired by the greedy method 
and a GA. The structure of this algorithm includes: 

1. randomly generating a specified population size number of minimum 
workable solutions; 

2. assigning components either according to the greedy method or to the 
random selection method; 

3. improving solutions through an inner-system and inter-system solution 
revision process. 

Ref [97] applies a hybrid dynamic programming/ depth-first search al-
gorithm to redundancy allocation problems with more than one constraint. 
Given the tightest upper bound, the knapsack relaxation problem is formu-
lated with only one constraint, and its solution f1(b) is obtained by a dy-
namic programming method. After choosing a small specified parameter e, 
the depth-first search technique is used to find all near-optimal solutions 
with objectives between f1(b) and f1(b) - e. The optimal solution is given by 
the best feasible solution among all of the near-optimal solutions.  

Ref [127] also presents a new dynamic programming method for a reli-
ability-redundancy allocation problem in series-parallel systems where 
components must be chosen among a finite set. This pseudo-polynomial 
YCC algorithm is composed of two steps: the solution of the sub-
problems, one for each subsystem, and the global resolution using previous 
results. It shows that the solutions converge quickly toward the optimum 
as a function of the required precision. 
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1.5 Comparisons and Discussions of Algorithms 
Reported in Literature 

In this section, we provide a comparison of several heuristic or meta-
heuristic algorithms reported in the literature. The compared numerical re-
sults are from the GA in Coit and Smith [10], the ACO in Liang and Smith 
[81], TS in Kulturel-Konak et al. [41], linear approximation in Hsieh [36], 
the IA in Chen and You [9] and the heuristic method in You and Chen 
[129]. The 33 variations of the Fyffe et al. problem, as devised by Nakagawa 
and Miyazaki [96], are used to test their performance, where different types 
are allowed to reside in parallel. In this problem set, the cost constraint is 
maintained at 130 and the weight constraint varies from 191 to 159. 

As shown in Table 4, ACO [81], TS [41], IA [36] and heuristic methods 
[129] generally yield solutions with a higher reliability. When compared to 
GA [10],  

• ACO [81] is reported to consistently perform well over different prob-
lem sizes and parameters and improve on GA’s random behavior; 

• TS [41] results in a superior performance in terms of best solutions 
found and reduced variability and greater efficiency based on the num-
ber of objective function evaluations required;  

• IA [9] finds better or equally good solutions for all 33 test problems, but 
the performance of this IA-based approach is sensitive to value-
combinations of the parameters, whose best values are case-dependent 
and only based upon the experience from preliminary runs. And more 
CPU time is taken by IAs; 

• The best solutions found by heuristic methods [129] are all better than, 
or as good as, the well-known best solutions from other approaches. 
With this method, the average CPU time for each problem is within 8 
seconds; 

• In terms of solution quality, the proposed linear approximation approach 
[36] is inferior. But it is very efficient and the CPU time for all of the 
test problems is within one second; 

• If a decision-maker is considering the max-min approach as a surrogate 
for system reliability maximization, the max-min approach [104] is 
shown to be capable of obtaining a close solution (within 0.22%), but it 
is unknown whether this performance will continue as problem sizes be-
come larger. 

For all the optimization techniques mentioned above, it might be hard to 
discuss about which tool is superior because in different design problems 
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or even in a same problem with different parameters, these tools will per-
form variously.  

Table 4. Comparison of several algorithms in the literature. Each for the test 
problems form [96] 

System Reliability 
W 

GA [10] ACO [81] TS [41] Hsieh[36] IA [9] Y&C [129] 

191 0.98670 0.9868 0.98681 0.98671 0.98681 0.98681 
190 0.98570 0.9859 0.98642 0.98632 0.98642 0.98642 
189 0.98560 0.9858 0.98592 0.98572 0.98592 0.98592 
188 0.98500 0.9853 0.98538 0.98503 0.98533 0.98538 
187 0.98440 0.9847 0.98469 0.98415 0.98445 0.98469 
186 0.98360 0.9838 0.98418 0.98388 0.98418 0.98418 
185 0.98310 0.9835 0.98351 0.98339 0.98344 0.98350 
184 0.98230 0.9830 0.98300 0.9822 0.9827 0.98299 
183 0.98190 0.9822 0.98226 0.98147 0.98221 0.98226 
182 0.98110 0.9815 0.98152 0.97969 0.98152 0.98152 
181 0.98020 0.9807 0.98103 0.97928 0.98103 0.98103 
180 0.97970 0.9803 0.98029 0.97833 0.98029 0.98029 
179 0.97910 0.9795 0.97951 0.97806 0.97951 0.97950 
178 0.97830 0.9784 0.97840 0.97688 0.97821 0.97840 
177 0.97720 0.9776 0.97747 0.9754 0.97724 0.97760 
176 0.97640 0.9765 0.97669 0.97498 0.97669 0.97669 
175 0.97530 0.9757 0.97571 0.9735 0.97571 0.97571 
174 0.97435 0.9749 0.97479 0.97233 0.97469 0.97493 
173 0.97362 0.9738 0.97383 0.97053 0.97376 0.97383 
172 0.97266 0.9730 0.97303 0.96923 0.97303 0.97303 
171 0.97186 0.9719 0.97193 0.9679 0.97193 0.97193 
170 0.97076 0.9708 0.97076 0.96678 0.97076 0.97076 
169 0.96922 0.9693 0.96929 0.96561 0.96929 0.96929 
168 0.96813 0.9681 0.96813 0.96415 0.96813 0.96813 
167 0.96634 0.9663 0.96634 0.96299 0.96634 0.96634 
166 0.96504 0.9650 0.96504 0.96121 0.96504 0.96504 
165 0.96371 0.9637 0.96371 0.95992 0.96371 0.96371 
164 0.96242 0.9624 0.96242 0.9586 0.96242 0.96242 
163 0.96064 0.9606 0.95998 0.95732 0.96064 0.96064 
162 0.95912 0.9592 0.95821 0.95555 0.95919 0.95919 
161 0.95803 0.9580 0.95692 0.9541 0.95804 0.95803 
160 0.95567 0.9557 0.9556 0.95295 0.95571 0.95571 
159 0.95432 0.9546 0.95433 0.9508 0.95457 0.95456 
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Generally, if computational efficiency is of most concern to designer, 
linear approximation or heuristic methods can obtain competitive feasible 
solutions within a very short time (few seconds), as reported in [36, 129]. 
The proposed linear approximation [36] is also easy to implement with any 
LP software. But the main limitation of those reported approaches is that 
the constraints must be linear and separable. 

Due to their robustness and feasibility, meta-heuristic methods such as 
GA and recently developed TS and ACO could be successfully applied to 
almost all NP-hard reliability optimization problems. However, they can 
not guarantee the optimality and sometimes can suffer from the premature 
convergence situation of their solutions because they have many unknown 
parameters and they neither use a prior knowledge nor exploit local search 
information. Compared to traditional meta-heuristic methods, a set of pro-
mising algorithms, hybrid GAs [33-34, 48-50, 132-133], are attractive 
since they retain the advantages of GAs in robustness and feasibility but 
significantly improve their computational efficiency and searching ability 
in finding global optimum with combining heuristic algorithms, neural 
network techniques, steepest decent methods or other local search meth-
ods. 

For reliability optimization problems, exact solutions are not necessarily 
desirable because it is generally difficult to develop exact methods for reli-
ability optimization problems which are equivalent to methods used for 
nonlinear integer programming problems [45]. However, exact methods 
may be particularly advantageous when the problem is not large. And 
more importantly, such methods can be used to measure the performance 
of heuristic or meta-heuristic methods. 

1.6 Conclusions and Discussions 

We have reviewed the recent research on optimal reliability design. Many 
publications have addressed this problem using different system structures, 
performance measures, problem formulations and optimization techniques.  

The systems considered here mainly include series-parallel systems, 
k-out-of-n: G systems, bridge networks, n-version programming architec-
ture, recovery block architecture and other unspecified coherent systems. 
The recently introduced NVP and RB belong to the category of fault toler-
ant architecture, which usually considers both software and hardware.  

Reliability is still employed as a system performance measure in a ma-
jority of cases, but percentile life does provide a new perspective on optimal 
design without the requirement of a specified mission time. Availability 
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is primarily used as the performance measure of renewable multi-state 
systems whose optimal design has been emphasized and well developed in 
the past 10 years. Optimal design problems are generally formulated to 
maximize an appropriate system performance measure under resource con-
straints, and more realistic problems involving multi-objective program-
ming are also being considered. 

When turning to optimization techniques, heuristic, meta-heuristic and 
exact methods are significantly applied in optimal reliability design. Recently, 
many advances in meta-heuristics and exact methods have been reported. 
Particularly, a new meta-heuristic method called ant colony optimization 
has been introduced and demonstrated to be a very promising general 
method in this field. Hybrid GAs may be the most important recent devel-
opment among the optimization techniques since they retain the advan-
tages of GAs in robustness and feasibility but significantly improve their 
computational efficiency. 

Optimal reliability design has attracted many researchers, who have 
produced hundreds of publications since 1960. Due to the increasing com-
plexity of practical engineering systems and the critical importance of reli-
ability in these complex systems, this still seems to be a very fruitful area 
for future research. 

Compared to traditional binary-state systems, there are still many un-
solved topics in MSS optimal design including 

• using percentile life as a system performance measure; 
• involving cold-standby redundancy; 
• nonrenewable MSS optimal design; 
• applying optimization algorithms other than GAs, especially hybrid op-

timization techniques. 

From the view of optimization techniques, there are opportunities for 
improved effectiveness and efficiency of reported ACO, TS, IA and GDA, 
while some new meta-heuristic algorithms such as Harmony Search Algo-
rithm and Particle Swarm Optimization may offer excellent solutions for 
reliability optimization problems. Hybrid optimization techniques are an-
other very promising general developmental direction in this field. They 
may combine heuristic methods, NN or some local search methods with all 
kinds of meta-heuristics to improve computational efficiency or with exact 
methods to reduce search space. We may even be able to combine two 
meta-heuristic algorithms such as GA and SA or ACO. 

The research dealing with the understanding and application of reliabil-
ity at the nano level has also demonstrated its attraction and vitality in re-
cent years. Optimal system design that considers reliability within the 

28      Way Kuo and Rui Wan  



 

uniqueness of nano-systems has seldom been reported in the literature. It 
deserves a lot more attention in the future. In addition, uncertainty and 
component dependency will be critical areas to consider in future research 
on optimal reliability design.  
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